Forms Plugin

In this chapter, we will create a plugin for providing a form generator which can be
used for sending the submitted data as an e-mail, or saving in the database.

By building this plugin, we will extend the core engine so that it can display custom
content forms in the page admin and custom page types. We will also adjust the
output on the front-end so it can display from the plugin instead of straight from the
page's body field.

How it will work

There are a number of ways to create a form. Probably the simplest way is to allow
the administrator to "draw" the form using a rich text editor, and treat the submitted
$_POST values as being correct.

There are a number of reasons why POST should be used for forms instead of GET:
A form may contain file-upload inputs, requiring multi-part encoded POST data.

A form may contain textareas, which could have arbitrarily long tracts of text pasted
in them (GET has a rather short limit on the number of characters allowed).

When a form is submitted through POST, and the user reloads the page, the browser
pops up a warning asking if the user is sure that he/she wants to post the form data
again. This is better than accidentally sending forms over and over again.

This method has the disadvantage that the server doesn't know what type of data
was supposed to be inputted, so it can't validate it.

A more robust method is to define each field that will be in the form, then create a
template which will be shown to the user.



Forms Plugin

This allows us to autogenerate server-side and client-side validation. For example, if
the input is to be an e-mail address, then we can ensure that only e-mails are entered
into it. Similar tests can be done for numbers, select-box values, and so on.

We could make this comprehensive and cover all forms of validation. In this chapter,
though, we will build a simple forms plugin that will cover most cases that you will
meet when creating websites.

We will also need to define what is to be done with the form after it's
submitted —e-mail it or store in a database.

Because we're providing a method of saving to database, we will also need a way
of exporting the saved values so they can be read in an office application. CSV is
probably the simplest format to use, so we'll write a CSV exporter.

And finally, because we don't want robots submitting rubbish to your form or trying
to misuse it, we will have the option of using a captcha.

The plugin config
Plugins are usually started by creating the definition file. So, create the directory /
ww.plugins/forms and add this file to it:

<?php

Splugin=array (
'name' => 'Form',
'admin' => array(

'page_type' => array(
'form' => 'form admin page form'
)
),
'description' =>
'Generate forms for sending as email or saving in the database’',
'frontend' => array(
'page_type' => array(
'form' => 'form frontend'
)
),
'version' => 3
) ;
function form admin page form($page, $page vars) {
$id=$pagel['id'];
ge="'";

require dirname( FILE ).'/admin/form.php';

[188]




Download from Wow! eBook <www.wowebook.com>

Chapter 8

return Sc;
}
function form frontend ($PAGEDATA) {
require dirname( FILE_ ).'/frontend/show.php';
return $PAGEDATA->render () .form controller ($PAGEDATA) ;

}

In the admin section of the $plugin array, we have a new value, page_type. We
are going to handle forms as if they were full pages. For example, you may have a
contact page where the page is predominantly taken over by the form itself.

The page_type value tells the server what function to call in order to generate
custom forms for the page admin.

It's an array, in case one plugin handles a number of different page types.

Because we've provided an admin-end page_type, it also makes sense to provide the
front-end equivalent, so we also add a page_type to the frontend array.

I've set the version to 3 here, because while developing it, I made three adjustments
to the database.

Here's the upgrade . php file, which should go in the same directory:

<?php
if ($version==0){ // forms fields
dbQuery ('CREATE TABLE IF NOT EXISTS ~forms fields™ (
“id® int(11) NOT NULL auto_ increment,
“name” text,
“type” text,
“isrequired” smallint(6) default O,
“formsId® int(11) default NULL,
“extra® text,
PRIMARY KEY (~id")
) ENGINE=MyISAM DEFAULT CHARSET=utf8');
Sversion=1;
}
if ($version==1){ // forms saved
dbQuery ('CREATE TABLE IF NOT EXISTS ~forms_ saved™ (
“forms_id® int (11) default 0,
“date created® datetime default NULL,
“id® int(11) NOT NULL auto_ increment,
PRIMARY KEY (~id")
) ENGINE=MyISAM DEFAULT CHARSET=utf8');
Sversion=2;

[189]



Forms Plugin

if ($version==2){ // forms_ saved values

dbQuery ('CREATE TABLE IF NOT EXISTS ~forms saved values™ (
“forms saved id~ int (11) default O,
“name” text,
“value” text,
“id® int(11) NOT NULL auto increment,
PRIMARY KEY (~id")
) ENGINE=MyISAM DEFAULT CHARSET=utf8') ;

Sversion=3;

}

When the plugin is enabled (enable it in the plugins section of the admin area), that
script will be run, and the tables added to the database.

e The forms fields table holds information about the fields that will be
shown in the form.

e The formsId value links to the page ID, and the extra value is used to hold
values in cases where the input type needs extra data—such as select-boxes,
where you need to tell the form what the select-box options are.

e The forms saved table holds data on forms that have been saved in the
database, including the date and time that the form was saved.

e The forms saved values holds the saved data and is related via forms
saved_id to the forms saved table.

Okay —we have the config and the database tables installed. Now let's get down to
the administration.

Page types in the admin

When you click on add main page in the page admin section, the pop up appears as
seen here:

Name |

Page Type | normal ~|

Associated [Friday, 28 May, 2010

Date

[190]




Chapter 8

The Page Type in the form only holds one value at the moment, normal. We need to
change this so that it can add types created by plugins.

We first assume that most pages will be "normal", so we can leave that as the single
value in the select-box; we then use the RemoteSelectOptions plugin described
earlier in the book to add any others if the select-box is used.

Edit /ww.admin/pages/menu. js and add the following highlighted line to the
pages_new () function:

$ ('#newpage_date') .each(convert_date_to_human readable) ;
$ ('#newpage dialog select [name=typel ')
.remoteselectoptions ({
url:'/ww.admin/pages/get types.php'
BE

return false;
And here's the /ww.admin/pages/get types.php file:

<?php
require '../admin libs.php';
echo '<option value="0">normal</options>';
foreach ($PLUGINS as $n=>$plugin) {
if (lisset ($plugin['admin'] ['page type'l))continue;
foreach ($plugin(['admin'] ['page_type'l as $n=>$p) {
echo '<option value="'.htmlspecialchars($n).'">"'
.htmlspecialchars($n).'</option>"';
}
}

All it does is to echo out the normal type as an option, then goes through all installed
plugins and displays their page_type values as well.

[191]



Forms Plugin

The add main page pop up now has the new form page type added, as seen in the
next screenshot:

MName

Page Type

Associated E gay, 2010
Date (form &

When you submit this form, a new page is created. The new page's form says its type
is normal, but that's because we haven't added the code yet to the main form.

You can see that it's been done correctly by checking the database, as seen in the next
screenshot:

kae@ryuk:~/websites/cms/ww.admin/pages g@ml
File Edit View Terminal Help

mysgl= select id,name,type from pages; |~
e S T |
| id | name | type
s e
| 24 | Home |
| 25 | Second Page |
| 35 | Home2 |
| 38 | test3 |
| 36 | test |
| 428 | Contact Us |
s e
6 rows in set (0.00 sec)

+
|
+
|
I
|
|
|
|
+

mysqgl>

We add the page types to the main page form in the same way as we did with the
add main page form.

Edit the /ww.admin/pages/pages.js file and add these highlighted lines to the
$ (function..) section:

other GET params:currentpageid
3N
$ ("#pages form select[name=type] ') .remoteselectoptions ({
url:'/ww.admin/pages/get types.php'
DE
P

[192]




Chapter 8

This does exactly the same as the previous one. However, on doing it you'll see that
the page form still says normal:

name [ContactUs

type | nommal ~|

body : g @ A B

The reason for this is that the HTML of the page is generated without knowing about
the other page types. We need to add code to the form itself.

Because the name of the type is stored in the page table (except if it's normal, in
which case it's stored as 0), all we need to do is to output that name on its own.

Edit /ww.admin/pages/forms.php, in the Common Details section, change the type
section to this:

// { type

echo '<th>type</th><td><select name="type"><option';
if (!$page['type']l)echo ' value='0'>normal';

else echo '>'.htmlspecialchars ($Spage['type'l);

echo '</options></select></td>"';

/] '}
Now, let's get back to the plugin and adding its admin forms to the page.

[193]



Forms Plugin

Adding custom content forms to the
page admin

The page admin form appears as seen in the next screenshot:

« Mozilla Firefox Wy, [ =
Fle Edit View History Bookmarks Tools Help

b I@ihttp flemsww.admin/pages php?action=edit&id=40

i Contacis Commeon Details Advanced Options

b L) Home

L+ 1] Home2

= Ui} second Page name [Contact Us title VIEW PAGE

right-click for options

type fom ~| parent - none - | Associated Date |Friday, 28 May, 2010
T 0oty {8 Bl souce o 5 B W ! @B I UXiEE iz==gapPEOdDO
P A D syles| [~] Format | [~] Fomt | [~ sz=| [-] B
Update Page Deta\ls‘ =

Done # B YSlow (o]

We saw in the previous chapter how to add another tab along the top.

When creating the custom form for the plugin, we could use the same method and
add another tab.

However, it makes more sense to convert the body section so that it can be tabbed.

In the end, it all gets added to the database in the same way, but visually, tabs along
the top of the page appear to be "meta" data (data about the page), whereas tabs in
the body section appear to be "content" data.

The difference is subtle, but in my experience, admins tend to find it easier to use
forms that are arranged in this way.

So, we will add the forms to the body section.

Open /ww.admin/pages/forms.php again, and change the generate list of
custom tabs section to this (changed lines are highlighted):

[194]



Chapter 8

// { gather plugin data
$custom_tabs=array () ;
$custom type func='"';
foreach ($PLUGINS as $n=>$p) {
if (isset (Sp['admin'] ['page tab']l)) {
$custom_tabs[$p['admin'] ['page tab'] ['name']]
=$pl'admin'] ['page _tab'] ['function'];
}
if (isset($p['admin'] ['page type'l)){
foreach($p['admin'] ['page type']l as $n=>$f){
if ($n==$pagel'type']l) $custom type func=$f;

}

/1)

We rename it to gather plugin data because it's no longer specifically about tabs.

This loops through all installed plugins, getting any tabs that are defined, and setting
$custom_type func to the plugin's page_type function if it exists.

And later in the same file, change the page-type-specific data section to this:

// { page-type-specific data
if (Scustom type func && function exists(Scustom type func)) {
echo '<tr><td colspan="6">"
.$custom_type func ($page, $page_vars) .'</td></tr>"';
}
else(
echo '<tr><th>body</th><td colspan="5">"';
echo ckeditor ('body', $Spagel'body']) ;
echo '</tds</tr>';
}
/] }

This outputs the result of the page_type function if it was set and the function exists.

The function requires a file that we haven't yet created, so loading the admin page
will display only half the form before crashing.

Create the directory /ww.plugins/forms/admin and create the file form.php in it:

<?php

Sc.='<div class="tabs">"';

// table of contents

$c.="'<ul><li><a href="#forms-header">Header</a></1li>"

[195]



Forms Plugin

.'<li><a href="#forms-main-details">Main Details</a></li>"'
.'<li><a href="#forms-fields">Fields</a></1li>"'
.'<li><a href="#forms-success-message">Success Message</a></li>'
.'<li><a href="#forms-template">Template</a></li></ul>";
/7 }
// { header
Sc.='<div id="forms-header"><p>Text to be shown
above the form</p>';

Sc.=ckeditor ('body', $page['body']) ;

Sc.="'</div>"';
!/}

// { main details
!/}

// { fields

!/}

// { success message
!/}

// { template
!/}
Sc.="'</div>";

I've left the main details, fields (and other) sections empty on purpose. We'll fill
them in a moment.

This code creates a tab structure. You can see the table of contents matches the
commented sections.

Creating a "skeleton" of a config form can be useful because it lets you view your
progress in the browser, and you can leave reminders to yourself in the form of
commented sections that have not yet been filled in.

Doing this also helps you to develop the habit of commenting your code, so that
others can understand what is happening at various points of the file.

The previous code snippet can now be viewed in the browser, and renders as seen in
the following screenshot:

[196]



Chapter 8

# Mozilla Firefox

FHle Edit View History Bookmarks Tools Help

&= ~ & @ & L@Ihttp:,‘ﬂcmsfww‘admin/pages.php?actmn=ed\t&'\d=40 Vl [t?l"‘[‘w’ﬂf

‘ent management creator

Pages  Site Options Communication Log Out

|| Contact !
i :_]JHOH Bl LSOl Advanced Options
ome
L ] Home2
L] secand Page name [ContactUs title VIEW PAGE

nright-click for options

type |form ~| parent —none - ~| Associated Date | Friday, 28 May, 2010

add main page Header Main Details Success Message Template

Text to be shown above the form

1B E s o B W @B I Uxx: cEl==i@aarPEOE0IA A
: siyles | [+ Format | Normal [ =] Font | [-] size ] 5|
body p
Update Page Details |
Done % B YSlow @ .

So we have two rows of tabs. You can now see what I meant — the bottom collection
of tabs is obviously about the page content, while the others are more about the
page itself.

Before we work on the fields tab, let's do the other three.

First, replace the template section with this:

// { template

Sc.= '<div id="forms-template">';

$Sc.= '<p>Leave blank to have an auto-generated
template displayed.</p>';

$c.= ckeditor('page vars[forms_ template]',
$page_vars['forms_ template']);

Sc.= '</divs';

/)

The template defines how you want the form to appear on the front-end. We start
off with the assumption that the admin does not know (or want to know) how to fill
this in, so we leave a message saying that if the template is left blank, it will be auto-
generated on the front-end.

[197]



Forms Plugin

When we get to displaying the form on the front-end, we'll discuss this one more.

Notice that we use page_vars [forms_template] as the name for the template's

input box. With this, we will not need to write server-side code to save the data, as it

will be handled by the page admin's own saving mechanism.

Next, replace the success message section with this:

// { success message
Sc.= '<div id="forms-success-message">';
Sc.= '<p>What should be displayed on-screen after the
message is sent.</p>';
if (!$page vars|['forms successmsg'])
Spage vars|['forms successmsg'l=
'<h2>Thank You</h2>
<p>We will be in contact as soon as we can.</p>';
$c.= ckeditor('page vars[forms successmsg]',
S$page vars|['forms successmsg'l]) ;
Sc.= '</divs>';

/7 }

This defines the message which is shown to the form submitter after they've submitted

the form. We initialize this with a simple non-specific message (We will be in contact
as soon as we can), as we cannot be certain what the form will be used for.

The final straightforward tab is the main details section. Replace it with the

following code. It may be a little long, but it's just a few fields. A screenshot after the

code will explain what it does:

// { main details

$c.= '<div id="forms-main-details"><table>';

// { send as email
if (lisset ($page vars['forms send as email']))
Spage vars|['forms send as email']=1;

Sc.= '<tr><th>Send as Email</th><td><select
name="page vars[forms send as email] "><option
value="1">Yes</option><option value="0""';

if (!$page vars['forms send as email'])

Sc.=' selected="selected"';
Sc.=
/7 }

// { recipient

'>No</option></select></td>";

if (lisset ($page vars|['forms recipient']))
Spage vars|['forms recipient']=
$ SESSION['userdata'] ['email'];

[198]



Chapter 8

$c.= '<th>Recipient</th><td><input
name="page vars[forms recipient]"
value=""'.htmlspecialchars($page vars|['forms recipient'])
L /s</tds</trs

/] '}

// { captcha required

if (lisset ($page vars|['forms captcha required']))

$page vars|['forms captcha required']=1;

Sc.= '<tr><th>Captcha Required</th><td><select
name="page vars [forms captcha required]"><option
value="1">Yes</option><option value="0""';

if (1$page vars|['forms captcha required'])

$c.=' selected="selected"';
$c.="'>No</option></select></td>";
/7 }
// { reply-to

if (lisset ($page vars['forms replyto'l)

|| !$page vars['forms replyto'l)
$page vars|['forms replyto']l='FIELD{email}';

Sc.= '<th>Reply-To</th><td><input
name="page vars[forms replytol"
value=""'.htmlspecialchars ($page vars['forms replyto']).'"
/></td></tr>";

/] '}

// { record in database

if (lisset ($page vars['forms record in db']))

$page vars|['forms record in db']=0;

Sc.= '<tr><th>Record In DB</th><td><select
name="page vars [forms record in db]"><option
value="0">No</option><option value="1""';

if ($page vars|['forms record in db'])

Sc.=' selected="selected"';
$c.='>Yes</option></select></td>"';
}

{ export

$id) {

$c.= '<th>Export<br /><i style="font-size:small">(requires

//
//
if(

Record In DB)</i></th><td>from: <input id="export from"
class="date" value=""'
.date('Y-m-d',mktime(0,0,0,date("m")-1,date("d"),
date("Y")))
.'" />. <a href="javascript:form export ('.$id
. ') "sexport</a></td></tr>";

[199]



Forms Plugin

}

else{ $c.="'<td colspan="2">&nbsp;</td></tr>";

}
/1)

Sc.= '</table></divs>';
!/}

This code builds up the Main Details tab, which looks like this in the browser:

ype |form ] parent | --none -- =] ASSOCIated Uate |[Friday, 28 WMay, 2010
Send as Email Yes j Recipient |kae@veren5.com
Captcha Required Yesj Reply-To |FIELD{emaiI}
Record In DB No - Export from; |2010-04-29  export
(requires Record In DE)
Update Page Details

The Send as Email and Captcha Required are defaulted to Yes, while the Record in
DB is defaulted to No.

Recipient is the person that the form is e-mailed to, which is set initially to the e-mail
address of the administrator that created the form.

If the form is e-mailed to the recipient, and the recipient replies to the e-mail, then
we need to know who we're replying to. We default this to FIELD{email}, which is
a code indicating that the reply-to should be equal to whatever was filled in in the
form in its email field (assuming it has one). We'll talk more on this later on. You
could just as well enter an actual e-mail address such as no-reply@no-such.domain.

The Export field lets you export saved form details to a CSV file. We'll work on this
later in the chapter as well.

For now, let's define the form fields.

Defining the form fields

Before we look at the code, we should define what it is that we are trying to achieve
with the fields tab.

We want to be able to define each field that will be entered in the form by the user.

[200]



Chapter 8

While some validation will be available, we should always be aware that the forms
plugin will be used by an administrator who may be daunted by complex controls,
so we will try to keep the user interface as simple as possible.

Validation will be kept to a minimum of whether the field must be entered in the
form, and whether the entered value matches the field type. For example, if the field
is defined as an e-mail, then the entered value must be an e-mail address. If the field
is a select-box, then the entered value must match one of the entries we've defined as
belonging to that select-box, and so on.

We will not use complex validation, such as if one entry is entered, then another
must not. That kind of validation is rarely required by a simple website, and it would
make the user interface much more cluttered and difficult to use.

Now, the fields tab is made of two parts—first, any fields that are already
associated with the form will be printed out by the PHP, and we will then add some
JavaScript to allow more fields to be added "on-the-fly".

Here is the PHP of it (replace the £ields section in the file with this):

// { fields
Sc.= '<div id="forms-fields">"';
$c.= '<table id="formfieldsTable" width="100%"><tr><th

width="30%">Name</th><th width="30%">Type</th><th
width="10%">Required</th><th id="extrasColumn"><a
href="javascript:formfieldsAddRow () ">add
field</a></th></tr></table><ul id="form fields"
style="1list-style:none">';

$g2=dbAll ('select * from forms fields where formsId="'.sid.'"
order by id');

$1=0;

Sarr=array ('input box', 'email', 'textarea', 'date’',

'checkbox', 'selectbox', 'hidden') ;
foreach ($g2 as $r2) {
$c.= '<li><table width="100%"><tr>"';

// { name

Sc.="'<td width="30%"><input name="formfieldElementsName/['
.$i.']1" value="'.htmlspecialchars(Sr2['name'])."'" />'
< /tdst;

/7 }

// { type

Sc.='<td width="30%"><select name="formfieldElementsType [
LSiLrIns;

foreach ($arr as $v) {

[201]



Forms Plugin

Sc.='<option value="'.Sv.'"';
if (Sv==Sr2['type'])Sc.=' selected="selected"';
Sc.="'>'.Sv.'</option>"';
}
Sc.='</select></td>"';
/7 }
// { is required
Sc.="'<td><input type="checkbox"
name="formfieldElementsIsRequired['. ($i).']1""';
if ($r2['isrequired']) S$c.="' checked="checked"';
Sc.=' /></td>"';
//}
// { extras
Sc.="'<td>"';

switch($r2['type']) {
case 'selectbox':case 'hidden':({
Sc.="'<textarea class="small"
name="formfieldElementsExtral'. (Si++)
.'1">' htmlspecialchars ($r2['extra']).'</textareas>"';
break;
}
default:
$c.="'<input type="hidden"
name="formfieldElementsExtral['. (Si++).']"
value=""'.htmlspecialchars ($r2['extra'l).'" />';

Sc.
//}

Sc.='</tr></table></1li>"';

'</td>";

Sc.= '</uls</divs>"';

If you've read through that, you'll see that it simply outputs a number of rows of
tield data. We'll have a look at a screenshot shortly. First, let's add the JavaScript.

At the end of the file, add these lines:

$c.='<script>var formfieldElements='.$1i.';</script>"';
$c.='<script src="/ww.plugins/forms/admin/forms.js">
</script>"';

The variable $i here was set in the previous code-block, and represents the number
of field rows that are already printed on the screen.

[202]




Download from Wow! eBook <www.wowebook.com>

Chapter 8

Now create the file /ww.plugins/forms/admin/forms.js:

window.form input types=['input box', 'email', 'textarea’',
'date', 'checkbox', 'selectbox', 'hidden'] ;
function formfieldsAddRow () {
formfieldElements++;
S('<li><table width="100%"><tr><td width="30%"><input '
+'name="formfieldElementsName ['+formfieldElements+"']"

+'/></td><td width="30%"><select class="form-type" name="'
+'formfieldElementsType['+formfieldElements+'] "><option>'

+form input types.join('</option><option>')
+'</option></select></td><td width="10%"><input '
+'type="checkbox" name="'
+'formfieldElementsIsRequired['+formfieldElements+']"
+'/></td><td><textarea name=""'
+'formfieldElementsExtra['+formfieldElements+']" !
+'style="display:none" class="small"></textarea></td>"'
+'</tr></table></1li>"
) .appendTo ($ ('#form fields'));
$('#form fields') .sortable();
$('#form fields input,#form fields select,#form fields
textarea') .bind('click.sortable mousedown.sortable',
function (ev) {
ev.target.focus () ;
I3
}
$('select.form-type').live('change', function () {
var val=$(this) .val();
var display=(val=='selectbox' || val=='hidden')
?'inline':'none’;
$(this) .closest('tr') .find('textarea')
.css('display',display) ;
3N
if (! formfieldElements)var formfieldElements=0;
$ (function () {
formfieldsAddRow () ;

1
First, we define the list of available field types.

The formfieldsaddRow () function adds a new field row to the fields tab. The row

is a simple line of HTML, replicating what we did in the PHP earlier.

Notice that we add a hidden textarea. This is to hold data on select-box values or

hidden values if we choose to set the field type to either of those.

[203]



Forms Plugin

Next, we make the rows sortable using the jQuery Ul's . sortable () plugin. This is
so that the admin can reorder the field values if they want to.

Note that the . sortable () plugin makes it tricky to click on the input, select, and
textarea boxes in the field row, as it hijacks the click and mousedown events, so the
next line overrides the .sortable () event grab if you click on one of those elements.
If you want to sort the rows, you should drag from a point outside those elements.

Next, we add a 1ive event, which says that whenever a select-box with the class
form-type is changed, we should change the visibility of the extras textarea in that
row based on what you changed it to.

And finally, we initialize everything by calling formfieldsAddRow () so that the
form has at least one row in it.

Note that we could have replaced the last three lines with this:

$( formfieldsAddRow) ;

However, when we get around to exporting saved data, we will want to add some
more to the initialization routine, so we do it the long way.

Main Details Fields Success Message Template

Name Type Required add field

Name inputbox |
Email email | It
Address textarea  ~| (]
Request selectbox x| O Send me your brochure
k Add me to your mailing list
I wish o complain
I have a comment on your product
Comment O

Update Page Details

In the screenshot, you can see the result of all this. I took this snapshot as I was
dragging the Request field above the Comment one. Notice that the Request field
has its extras textarea visible and filled in, one option per line.

Next we need to save the inputs.

Edit the file /ww.plugins/forms/plugin.php, and change the function form_
admin_page_form() to the following (changes are highlighted):

[204]



Chapter 8

function form admin page form($page, $page vars) {
$id=$page['id'];
Sc="";
if (isset ($_REQUEST['action'])
&& $ REQUEST(['action']=='Update Page Details')
require dirname( FILE ).'/admin/save.php';
require dirname( FILE ).'/admin/form.php';
return Sc;

}

And then all that's required is to do the actual save. Create the file /ww.plugins/
forms/admin/save.php:

<?php
dbQuery ('delete from forms fields where formsId="'.sid.'"');
if (isset ($ _POST['formfieldElementsName'])

&&is _array($_POST['formfieldElementsName'])) {

foreach(s POST['formfieldElementsName'] as $key=>$name) {
Sname=addslashes (trim(Sname)) ;
if ($name!="") {
$type=addslashes ($_POST['formfieldElementsType'] [$key]) ;
Sisrequired=
(isset ($_POST['formfieldElementsIsRequired'] [$key]))

?21:0;
Sextra=
addslashes (3_POST['formfieldElementsExtra'l [Skeyl) ;
Squery='insert into forms fields set name="'.S$name.'"
,type=""'.Stype.'", isrequired="'.$isrequired.'"
,formsId=""'.3$id.'",extra=""'.Sextra."'"';

dbQuery (Squery) ;

}

}

First, the old existing fields are deleted if they exist, and then a fresh set are added to
the database.

This happens each time you edit the form, because updating existing entries is much
more complex than simply starting from scratch each time. This is especially true if
you are moving them around, adding new ones, and so on.

Note that we check to see if the field's name was entered. If not, that row is not
added to the database. So, to delete a field in your form, simply delete the name and
update the page.

Now, let's show the form on the front-end.

[205]




Forms Plugin

Showing the form on the front-end

Showing the form is a matter of taking the information from the database and
rendering it in the page HTML.

First, we need to tell the controller (/index.php) how to handle pages which are of a
type other than normal.

Edit the /index.php file, and in the switch in set up pagecontent, replace the
other cases will be handled here later line with the following default case:

default: // { plugins
$not_found=true;
foreach ($PLUGINS as $p) {
if (isset (Sp['frontend'] ['page type'] [$PAGEDATA->typel)) {
Spagecontent=3$p['frontend'] ['page type']
[$PAGEDATA- >type] ($PAGEDATA) ;
$not_ found=false;
}
}

if ($not_found) $pagecontent="'<em>No plugin found to handle
page type <strongs'.htmlspecialchars ($PAGEDATA->type)
.'</strong>. Is the plugin installed and
enabled?</em>";

/] }

If the page type is not normal (type 0 in the switch that we've edited), then we check
to see if it's a plugin.

This code runs through the array of plugins that are loaded, and checks to see if any
of them have a frontend page_type that matches the current page. If so, then the
associated function is run, with the $PAGEDATA object as a parameter.

We've already created the function as part of the plugin. php file. Now let's work on
rendering the form.

Create the file /ww.plugins/forms/frontend/show.php (create the directory first):

<?php
require once SCRIPTBASE. 'ww.incs/recaptcha.php';
function form controller (Spage) {

$fields=dbAll ('select * from forms fields where

formsId=""'.$page->id.'" order by id');
if (isset ($_POST[' form action']))
return form submit ($page, $fields) ;
return form display($page,sfields);

}

[206]



Chapter 8

The first thing we do is to load up the field data from the database, as this is used
when submitting and when rendering.

When the page is first loaded, there isno _form_action value in the $_POST array,
so the function form display () is then run and returned.

Add that function to the file now:

function form display ($page,$fields) {

if(isset($page—>vars—>forms_template)){
Stemplate=$page->vars->forms_template;
if (Stemplate=="'&nbsp; ') Stemplate=false;

}

else Stemplate=false;

if (!Stemplate)
Stemplate=form template generate ($page, $fields) ;

return form template render ($Stemplate,sfields);

}

We first check the form's template to see that it is created and is not blank.
Next, if the template was blank, we build one using the field data as a guide.
And finally, we render the template and return it to the page controller.

Okay — the first thing we're missing is the form_template_generate () function.
Add that to the file as follows:

function form template generate ($page, $fields) {
St='<table>"';
foreach($fields as $f){
if ($f['type'l=="hidden')continue;
$name=preg_replace('/[*a-zA-Z0-9 1/','',$f['name']);
St.='<tr><th>'.htmlspecialchars ($f['name'])
.'</th><td>{{$"'.Sname."'}}</td></tr>";
}
if (Spage->vars->forms_captcha required) {
$t.="'<tr><td>&nbsp;</td><td>{{CAPTCHA}}</td></tr>";

}

return $t.'</table>';

}

Simple enough — we iterate through each row, and generate some Smarty-like code.
Here's an example output of the function (formatted for easier reading):

<table class="forms-table">
<tr><th>Name</th><td>{{$Name}}</td></tr>

[207]



Forms Plugin

<tr><th>Email</th><td>{{$Email}}</td></tr>

<tr><th>Address</th><td>{{$Address}}</td></tr>

<tr><th>Request</th><td>{{$Request}}</td></tr>

<tr><th>Comment</th><td>{{$Comment }}</td></tr>

<tr><td>&nbsp;</td><td>{{CAPTCHA}}</td></tr>
</table>

We're not going to actually use Smarty on this one, as it would be too much —we just
want to do a little bit of code replacement, so adding the full power of Smarty would
be a waste of resources.

We use the Smarty-like code so that the admin doesn't have to remember different
types of code. We could have also used BBCode, or simply placed % on either end of
the field names, and so on.

Note that we don't output a line for hidden fields. Those fields are only ever seen by
the administrator when the form is submitted.

Finally, we get to the rendering.

This function is kind of long, so we'll do it in bits.

function form template render ($template, $fields) {
if (strpos ($template, ' { {CAPTCHA}}') I==false) {
Stemplate=str replace ('{{CAPTCHA}}",
recaptcha get html (RECAPTCHA PUBLIC), $Stemplate) ;
}
foreach($fields as $f)
$name=preg_replace('/[*a-zA-Z0-9 1/','',$f['name']);
if ($f['isrequired']) $class=' required';
else Sclass='"';
if (isset ($_POST [$name])) {
$val=$ POST [$name] ;

}

else Sval='"';

We first initialize the function and render the captcha if it's turned on. We're using
the same captcha code that we used for the admin authentication.

Next, we start looping through each field value.

If the form has already been submitted, and we're showing it again, then we set $val
to the value that was submitted. This is so we can show it in the form again.

Next, we figure out what should go into the template for the field:

[208]




Chapter 8

switch($f['type']) {
case 'checkbox': // {
$d="'<input type="checkbox" id="forms-plugin-'.Sname

.'" name="'.Sname.'"';
if (sval)sd.=' checked=""'.$ REQUEST[$name].'"';
8d.=' class="'.S$class.'" />';
break;
//}

case 'date': // {
if(!sval)Sval=date('Y-m-d"') ;

$d="'<input id="forms-plugin-'.Sname.'" name="'.Sname
.'" value=""'.htmlspecialchars($val).'" class="date'
.Sclass.'" />';
break;
/7 }
case 'email': // {
$d='<input type="email" id="forms-plugin-'.S$name.'"
name=""'.$name.'" value="'.htmlspecialchars($val).'"
class="email'.$class.'" />';
break;
/7 }
case 'selectbox': // {
$d='<select id="forms-plugin-'.S$name.'" name="'.S$name
.'" class=""'.$class.'">"';

Sarr=explode ("\n",htmlspecialchars ($f['extra'l)) ;
foreach ($arr as $1i)

if ($1i=="'"')continue;

$li=trim($1i);

if ($val==$1i)$d.="'<option selected="selected">'.$1li

.'</option>"';

else $d.='<option>'.$1li.'</option>"';

}

8d.="'</select>';

break;
/7 }
case 'textarea': // {
$d='<textarea id="forms-plugin-'.S$name.'" name=""'
.Sname.'" class="'.$class.'">"
.htmlspecialchars($val).'</textareas>"';
break;
/7 }
default: // {
$d="'<input id="forms-plugin-'.Sname.'" name="'.Sname
.'" value=""'_.htmlspecialchars($val).'" class="text'
.$class.'" />';
/7 }

[209]



Forms Plugin

This switch block checks what type of field it is, and generates an appropriate HTML
string to represent it.

Note that we've added classes to the inputs. These classes can be used for client-side
validation, or for CSS.

Finally:

Stemplate=str replace('{{$'.%name.'}}',6 $d, Stemplate);

}

return '<form method="post" id="forms-plugin"s>'.Stemplate
.'<input type="submit" name="_ form action"
value="submit" /></form>
<script src="/ww.plugins/forms/frontend/forms.js">
</script>';

}

We replace the Smarty-like code with the HTML string for each field, and finally
return the generated form with the submit button attached.

We also load up a JavaScript file, to handle validation on the client-side. We'll get to
that shortly.

Having finished all of this, here's a screenshot of an example filled-in form:

% cms > Contact Us - Mozilla Firefox . || =13}

File Edit Wiew History Bookmarks Tools Help

$go v \j e [@ http:/fems/Contact-Us V| I-'lv :newwrlshp\al'@u

[@] cms > Contact Us 3 | [8] http:yfcmsfw. .n=edit&id=40 | + hl
Contact Us  Home Home2 Second Page

Name [kae verens |

Email [kae@verens‘com ]

Monaghan,
Address |Ireland

Request |1 wish to complain o

my hovercraft is full
Comment |of eels

| Type the two waords: =
% r ol o { ReCAPTCHA
IR o

‘ submit |

Done # B vslow @ .

[210]



Chapter 8

The form can be easily marked up in CSS to make it look better. But we're not here to
talk style—let's get on with the submission of the form.

Handling the submission of the form

When submit is clicked, the form data is sent to the same page (we didn't put an
action parameter in the <form> element, so it goes back to the same page by default).

The submit button itself has the name form action which, when the form
controller is loaded, triggers form_submit () to be called.

Add that function to the same file:

function form_submit($page,$fie1ds){
Serrors=form validate ($page, $fields) ;
if (count ($errors)) {
return '<ul id="forms-plugin-errors"><li>'
.join('</1li><li>"', $errors)
< /uls!
.form display (sSpage, $fields) ;
}
if ($page->vars->forms_send as email)
form send as email ($page, $fields) ;
if ($page->vars->forms record in db)
form record in db($page, $fields) ;
return $page->vars->forms_ successmsg;

}

The first thing we do is validate any submitted values.

. Always write your validation for the server-side first.
)
"Q If you do your validation on the client-side first, then you may forget

to do it on the server-side. You'd also have to disable your client-side
validation in order to test the server-side work.

After validation, we send the form off in an e-mail and save the form in the database
if that's how it was set up in the admin area.

Finally, we return the success message to the page controller.

There are three functions to add.

[211]



Forms Plugin

The first is the validation function:

function form_validate($page,$fie1ds){
Serrors=array () ;
if ($page->vars->forms_captcha required) {
Sresp=recaptcha check answer (
RECAPTCHA PRIVATE,
$_ SERVER ["REMOTE_ ADDR"],
$ POST["recaptcha challenge field"],
$ POST ["recaptcha response field"]
) ;
if (!$resp->is_wvalid) Serrors[]='Please fill in
the captcha.';
}
foreach($fields as $f)
$name=preg_replace('/[*a-zA-Z0-9 ]1/','',$f['name']) ;
if (isset ($_POST [$namel))
$val=$ POST [$name] ;
}
else Sval='"';
if ($f['isrequired'] && !$val)
Serrors[]='The "' .htmlspecialchars($f['name']).'" field
is required.';
continue;
}
if (!s$val)continue;
switch ($f['type']) {
case 'date': // {
if (preg replace('/[0-9]{4}-[0-9]1{2}-[0-91{2}/","'",

Sval)=="'"')continue;
Serrors[]='"'.htmlspecialchars($Sf['name'])."'" must be
in yyyy-mm-dd format.';
break;
/7 }
case 'email': // {
if (filter var($val,FILTER VALIDATE EMAIL))continue;
Serrors[]='"'.htmlspecialchars($Sf['name'])."'" must be
an email address.';
break;
/7 }

case 'selectbox': // {
Sarr=explode ("\n",htmlspecialchars (Sf['extra'l));
S$found=0;
foreach ($arr as $1i) {

[212]



Chapter 8

if ($1i=="'"')continue;
if ($val==trim($1i)) $found=1;
!

if ($found) continue;

Serrors[]='You must choose one of the options in

"' htmlspecialchars($f['name'])."'"."';

break;

/1)

}

return Serrors;

}

If you create dummy functions for form send_as_email () then you can test the
given code, and its output should appear as seen in the next screenshot:

# cms > Contact Us

- Mozilla Firefox -

@o v |\£§‘ [

File Edit Wiew History Bookmarks Tools Help

I8 ] 3

@ [[8)] httpyemsicontact-us

V] [ilv |newirishp|a@l]

cms > Contact Us

® Ihttp:HcmsM...n_:edit&i_d:flu b4 |+

v

Contact Us

Home Home2 Second Page

Name

Email
Address
Request

Comment

submit

e Please fill in the captcha.
e "Email" must be an email address.

[kae verens ]

[kae at verens.com ]

Monaghan,
Ireland

[Iwish te complain

<>

my hovercraft is full

of eels
% GOpic

Typa the two words: =]

I

Done

# IR vslow

@ et

Okay, so validation works.

[213]



Forms Plugin

Sending by e-mail

Next, we will add the e-mail sender function.

The e-mail that we create does not need to be fancy —we're submitting a simple list
of questions and responses, and it's not to a client, so it doesn't need a template to be
created.

With that in mind, it's reasonable to create the following simple function:

function form send as email ($page, $fields) {

foreach($fields as $f){
$name=preg_replace('/[*a-zA-Z0-9 1/','',$f['name']) ;
if (lisset ($_POST[$name]) ) continue;
Sm.=8$f ['name'] ."\n\n";
Sm.=$ POST [$name] ;

}

$from=preg replace('/*“FIELD{|}$/','",
Spage->vars->forms_replyto) ;

$to=preg replace('/"FIELD{|}$/','",
$page->vars->forms_ recipient) ;

if ($page->vars->forms replyto!=$from)

$from=$ POST [preg replace('/[*a-zA-Z0-9 1/','',$from)];
if ($page->vars->forms recipient!=$to)

$to=$ POST [preg replace('/["a-zA-20-9 1/','',$to)];
mail (Sto, ' [’ .$_SERVER['HTTP_HOST'] L

.addslashes ($page->name) , $m,
"From: $from\nReply-to: Sfrom");

[214]



Download from Wow! eBook <www.wowebook.com>

Chapter 8

With this in place, the system will send the form contents as an e-mail:

# Inbox - kae@verens.com - Mozilla Thunderbird - ~ :-.__ [ (1[5
Fle Edit Wiew Go Message Tools Help i
22 Get Mail v | write (W) Address Book & Tag™v Reply &z Reply All Delete
=
# Inbox - kae@verens.com | [8] weleome to Shredder! S ‘
All Folders 4 » & QuickFilter: == v & o @ Filter these messages... <Ctrl+Fz
~ |- |kae@verens.com
= @“ E | | @ | Subject = From & | Date B
[El Drafts onta ae@verens.co g P -
@i sent [ems] Contact Us ~  kae@wverens.com © 05:04 PM @
b (&l Archives '
@ Junk e ok [Q replyl v [@fcrward”[@ arch\ve] [ [ junk‘ I@ de\ete]
Frash
Bl packt subject [ems] Contact Us 05:05 PM
b persuna\ to Youid other actions v
Bl sent Messages
v [-lkae@webworks.ie = || ----e-eoiiiiiiiiiiiioiiiiooionn
P EHInbox (25) Name
Q Drafts kae verens
{H Sent B L D s S B
b [l Archives Email
Frash
[Esent Messages kae@verens.com
P Ewerk Address
b =
b= Managhan,
P Ireland
b 0 | ooemmmmmemoeemmeeenommeee
b = Request
b I wish to complain
CEEE e B
b B ocal Folders Comment
my hovercraft is full of eels
= Unread: 23 Total: 679

Perfectly readable and simple.

Saving in the database

Next, we tackle saving the form into the database:

function form record in db($page,$fields) {
SformId=$page->id;
dbQuery ("insert into forms saved (forms_ id,date created)
values ($formId,now())");
$1d=dbOne ('select last_ insert id() as id','id'");
foreach($fields as $r)
$name=preg_replace('/[*a-zA-Z0-9 1/','',$r['name']);
if (isset ($_POST [$name])) $val=addslashes ($_POST [$name]) ;
else sval='"';
Skey=addslashes ($Sr['name']) ;
dbQuery ("insert into forms_ saved values (forms_ saved
id,name,value) values($id, 'Skey','Sval')");

}

[215]



Forms Plugin

This records the values of the form in the database:

mysgl> select * from forms saved;

t---------- t---- - +----+
| forms_id | date created | id |
t---------- t---- - +----+
| 40 | 2010-06-01 05:58:16 | 1 |
t---------- t---- - +----+

1 row in set (0.00 sec)

mysql> select * from forms saved values \G
hhhkhkhhhhhhhhhdhdhdhdhdhdkdhdkd ] poOw *F ddkdkhdhdhdhdhdhdhdhdhdhdhh
forms _saved id: 1
name: Name
value: Kae Verens
id: 6
hhkhkhkhhhhkhdhhhdhdhdhdhdhdkdhdkd D poOw *d dkdkdkhdhdhdhdhdhdhhhdhdhhhh
forms saved id: 1
name: Email
value: kae@verens.com
id: 7
hhhkhkhhkhkhhhhdhdhdhdhhhdkhddhdd 3 pow *F dkdkdkhdhdddhdhdhdhdhdhhhdhh
forms _saved id: 1
name: Address
value: Monaghan,
Ireland
id: 8
hhkhkhkhhhhhhhhhdhhhdhhhdhddhdd 4 pow ** ddkdkhdhhdhhhdhdhdhhhdhdhdhhh
forms saved id: 1
name: Request
value: I wish to complain
id: 9
khhkhkhhkhkhhkhhkhhhhdhhdhhkhddhdkddkd 5 pow *ddkdkddhdhdhdhdhdhdhhhhhdhhhh
forms saved id: 1
name: Comment
value: my hovercraft is full of eels
id: 10
5 rows in set (0.00 sec)

We cannot expect the admin to use the MySQL, so we need to write the export
function now.

[216]



Chapter 8

Exporting saved data

Back in the admin area, we had the following part of the Forms config:

| = | T T T
Yesj Export frorn: |2010-05-01 . export

(requires Record In DB)

First, let's make that date area more interesting.

Edit the file /ww.plugins/forms/admin/forms.js and add the following
highlighted line to the $ (function) part:

$ (function () {
formfieldsAddRow () ;
$ ("#export from').datepicker ({dateFormat:'yy-m-d'});

13N

This simple line then adds calendar functionality to that input, as seen in the
next screenshot:

* kae@ryuk: ~/websites/cms/ww.plugins/forms/admin

# Mozilla Firefox

Fle Edit ‘iew History Bookmarks Tools Help

<§ﬂ ~ ‘\}j ] @ [@‘http:,','cmsMw.admln]pages‘php?act\on:ed\t&\dzdo

[@] cms > Contact Us X httpficmsjw...n=edit&id=40 x | 4

| Contact Us /"‘E
' P S d

bl e age Save
|- i Home2

i secondpags Common Details | [EVCITTReI e

night=click for options 1] May 2010 (]
name |Contact Us title Su Mo Tu We Th Fr Sa g

add main page | type ’m parent m 1 | May, 2010

I | Y

| EEmEEEE
. EEuEEDET e
EERDEED
Captcha Required ’Tsj Reply-To ,m X

Record In DB Yes +| Export from:|2010-06-01 . export
(requires Record /n DB)

Send as Email | yes j Recipient kae@

Update Page Details | -
Transferring data from ajax.googleapis.com... % B Yslow @ .

When the input is clicked, the calendar pops up, so the admin doesn't have to write
the date and get the format right.

[217]



Forms Plugin

Now let's add the function for handling the export (to that same file):

function form_export(id){
if (!id) return alert ('cannot export from an empty
form database') ;
if (! (+$('select [name="page vars\\ [forms record in db\\]"]')
.val()))
return alert ('this form doesn\'t record to database') ;
var d=$('#export from').val();
document .location="'/ww.plugins/forms/admin/export .php?date="
+d+'&id="+1id;

}

This function checks first to see if the form is marked to save in the database. If so, then
it does a redirect to /ww.plugins/forms/admin/export . php. Create that file now:

<?php

require $_ SERVER/['DOCUMENT ROOT'].'/ww.admin/admin libs.php';

if (isset ($_REQUEST['id']))$id=(int)$_REQUEST['id'];

else exit;

if (!sid)exit;

$date=$ REQUEST['date'];

if (!preg match('/*20[0-9] [0-9]-[0-9] [0-9]-[0-9][0-9]%/",
Sdate) )die('invalid date format') ;

header ('Content-type: application/octet-stream') ;
header ('Content-Disposition: attachment; filename="form!'
.$id.'-export.csv"');

// { ids

Sids=array () ;

Srs=dbAll ("select id,date created from forms saved where
forms_id=$id and date created>'S$date'");

foreach ($rs as $r)
$ids([$r['id']]l=sr['date created'];

}

/7 }

// { columns

Scols=array() ;

Srs=dbAll ('select name from forms fields where formsId="'
.$id.'" order by id');

foreach ($rs as $r)
$cols[]=Sr['name'];

}

//

// { do the export

——

[218]



Chapter 8

echo '"Date Submitted","';
echo join('","',Scols).'"'."\n";
foreach($ids as $id=>$date) {
echo '"'.$date.'",';
for ($i=0;$i<count ($cols) ; ++$1i) {
$r=dbRow ('select value from forms saved values where
forms saved id='.$id.' and name="'.addslashes ($cols[$i])
L)
echo '""'.str replace('\\"',6'""',addslashes(Sr['value']))
if ($i<count ($Scols)-1)echo ', ';
else echo "\n";

/] '}
This exports the data as a CSV file.

Because the Content-type is application/octet-stream and browsers would
not normally know how to handle that, the file is forced to download, instead of
displaying in the browser. You can then open that exported file up in a spreadsheet:

T T T e ST
B | < | D | E | F |
Date Submitted [ame Email Address Request Comment
5 Monaghan,
2010-06-01 05:58:16 |Kae Verens kae@verens.com |lreland | wish to complain |my hovercraft is full of eels
E|
A

With the export finished, we've completed a functional forms plugin.

Summary

In this chapter, we added the ability for a plugin to create a full page type, instead of
just a trigger.

We also added content tabs to the page admin.

With the Forms plugin created, the admin can now create contact pages,
questionnaires, and other types of page that request data in the form of user input.

In the next chapter, we will create an Image Gallery plugin.

[219]



